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Foreword The digital transformation under way in the water sector encompasses 
improvements in function, viability, and overall service provision by utilities 
in the face of ageing infrastructure, increased frequency of extreme events, 
urbanisation and population growth, and unforeseen global events. 

Looked at from that perspective, one could say that the raison d’être of 
digitalisation is to secure resilience – resilience of drinking water supply, 
wastewater treatment, stormwater management, and much more. As growing 
numbers of utilities begin to incorporate digital technologies into their daily 
operations, the benefits become increasingly evident. But in parallel to this, new 
challenges also emerge.

The International Water Association’s (IWA) 5-year Strategic Plan 2019-2024 
highlights the need for innovation to address global water challenges. With this 
strategic outlook in mind, IWA’s Digital Water Programme is pleased to share 
this publication “Dynamic resilience for wastewater treatment processes: 
exploiting real data for long term resilience”. This white paper takes a look at 
the concept of dynamic resilience through the lens of wastewater processes and 
resource recovery facilities while highlighting the perspectives of public health 
and industry professionals. With the unpredictability of today’s challenges, a 
solution’s resilience is equivalent to its efficiency. 

The approach presented in this paper gives insight into how a system or process 
responds to a stressor/event and how this can be used to predict future events, 
eventually resulting in more streamlined and proactive operation. It emphasises 
the need for consistent and quality data collection, while presenting a use for large 
data silos, which often tend to be overlooked. It provides a basis for encouraging 
utilities and companies to implement sufficient and effective instrumentation. It 
also aids in the evaluation of digital transformation. 

IWA is actively engaging across the international water sector to build support 
for a smarter approach to water management, highlighting the advantages of 
digitalisation as a key enabler. Tapping into the extensive knowledge of our expert 
members, IWA can function as a catalyst for water and wastewater utilities during 
their journey towards the uptake of digital technologies. To support this journey, 
the IWA Digital Water white paper series is providing insights into core aspects 
of the digital space. Thanks to this latest addition on the concept of dynamic 
resilience, professionals can predict and plan for future significant events with 
more confidence, while prescribing proactive solutions.

The initiative reflects IWA’s wider outlook: we believe that, by joining forces 
and sharing experiences through collective actions, our sector and our society 
can respond to critical challenges and emergy far more resilient than we have 
previously imagined possible.

Kalanithy Vairavamoorthy
Executive Director of the International Water Association
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Summary With societal (e.g., COVID-19) and climatic factors coinciding with increasing 
regulatory pressures, the resilience of wastewater networks and infrastructure 
is reducing globally. Historically, water companies have relied in reserve 
capacity, but are now being forced to manage extreme dynamic responses as 
wastewater assets react new stressors. An example of this is rainfall intensity, 
which has already increased from 12 to 24 % (Fischer et al., 2014) and has been 
commonly followed by prolonged dry periods driven by climate change (NASA, 
2016). These dramatic variations generate complex dynamic changes and can 
drastically reduce the resilience of networks and, in turn, of the network water 
resource recovery facilities (WRRF). Without unified quantification methods, 
it is impossible to compare the resilience of different wastewater processes or 
systems, when exposed to climate and societal stressors. Also, the complexity of 
dynamic changes makes it virtually impossible to simulate the numerous dynamic 
factors that combined cause these reductions in resilience. 

To avoid possibly cumbersome modelling and simulation of possible scenarios, 
dynamic resilience uses actual WRRF data to visualise zones of process stress and 
resilience as a heat map. The methods presented in this white paper separate 
stressors present in water company data as the ‘cause’ of an event, and the 
‘effect’, whether a WRRF experiences process stress or resilience as a result. This 
separation of stressors and process stress is key to isolating the cause of an event 
then its manifestation as the ‘effect’. This separation of the stressor and process 
stress requires data feedback from WRRF process and systems. Data generated 
by water companies is ideal for computation of dynamic resilience in response 
to extreme events, where the cause (stressor) and effect (process stress) can be 
seperated. This data is generated in vast quantities daily (typically < 1 h intervals) 
and is used to make operational decisions, but often remains in silos, or as 
described by Aguado et al. (2021), ‘data graveyards’. Another challenge is that 
WRRF data can be difficult to interpret when instruments are poorly maintained 
or installed incorrectly (Grievson, 2020), but meaningful observations can still 
be made to interpret resilience metrics. Therefore, this data must be exploited 
to understand the dynamic resilience. Without data (real-time or from silos) 
connecting a WRRF or process to resilience, evaluations may remain theoretical 
and iterative, which is computationally intensive. 

This white paper starts by describing the historical context of resilience, before 
moving onto the dynamic resilience of wastewater processes and WRRF. Real-
world examples of societal and process related resilience from industrial and 
academic experts are provided, which discuss the challenge of generating data 
under uncertainty of ageing infrastructure. A case study is then presented on 
dynamic resilience using actual WRRF data. The case study shows how actual 
water company instrument data could be used to evaluate stressors and process 
stresses independently. The outcomes of dynamic resilience case studies are 
then presented as a series of contoured heat maps.
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This section covers the fundamental and historical context of resilience and its 
evolution within the water industry globally.

The fundamentals of resilience for wastewater 
treatment

The word resilience dates back to the 1620s, described as the ‘act of rebounding’, 
i.e., the ability to recover from an external event (Harper, 2019). By definition, 
the term rebound indicates that an external event causes a system to deviate 
from its initial reference position, and must be reconciled for an event to be 
considered complete. Classical resilience theory, originated from social sciences, 
focusing on ecological resilience in predator-prey systems, where a system 
absorbs change until moving to a completely new state as described by Canadian 
ecologist Crawford Holling (Holling, 1973). This description was later expanded 
to include engineering resilience, which focuses on maintaining stability close to 
an equilibrium stready state. An example of engineering resilience is a set point, 
where the system is controlled to maintain predictable operation close to user 
defined optimum.

Wastewater systems can be a combination of  the two types of resilience 
(ecological and engineered). Extraneous events shift the wastewater collection 
systems to a new operating state and, as result, the system performance is 
controlled, in order to manage undesirable process upsets or disturbances. 
Using the example of an activated sludge (AS) system, the microbial ecology 
is controlled by an engineered system of mechanical/electrical components 
(aeration and pumps). Therefore, a more accurate classification of a biological 
treatment process would be engineered ecology, where process engineers apply 
engineering principals to control biological ecology. Wastewater catchments 
can also behave ecologically, where systems can move to a completely different 
operational state as populations vary, or extreme events occur. Many of these 
changes in the catchment have a direct effect on the WRRF engineered ecology 
due to dramatic operational state changes which reduce resilience by eroding 
operational safety factors (reserve capacity). Therefore, to evaluate the dynamics 
of resilience, we must understand that we are actually managing engineered 
ecology (i.e., engineered systems that aims to control microbial ecology). This 
is where, dynamic resilience extends existing theories: it accepts that dynamic 
changes in resilience are both, positive (resilience) and negative (stress). 

Another difficulty for resilience has been selecting an appropriate definition. A 
commonly accepted definition was proposed by Walker et al. (2004) as:

‘Resilience is the capacity of a system to absorb disturbance and reorganise while 
undergoing change so as to retain essentially the same pre-disturbance process, 
form, identity, and feedbacks’

This definition suggests that a system undergoing change adapts to an event 
before returning to its original condition (Fig. 1). However, the definition does 
not account for the complexity associated with biological wastewater systems, 

Introduction
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which have numerous states (ecological and engineered), some temporary and 
some permanent. Resilience is also reduced further, by additional novel extreme 
states occurring outside of diurnal and seasonal patterns, which related to 
climate change and modifications to human behaviour. When normal operation 
is combined with novel stressors, simulation of their response is cumbersome, 
vast numbers of theoretical iteratons. Therefore, if WRRF data has sufficient 
resolution (adequate range and quantity), it could hold clues to these novel 
states, where many parameters are affected by stressors, and the process stress/
resilience response (dynamic resilience). 

There are many interrelated factors must be considered to evaluate the dynamics 
of resilience. Therefore, it is crucial to not only consider wastewater infrastructure 
and WRRF, but also factors that lead to stressors under the following headings:

1. Political resilience 
2. Economic resilience 
3. Social resilience 
4. Technological resilience
5. Environmental resilience
6. Legal resilience

PESTEL factors and their interactions are responsible for many of the stressors 
exerted on ageing assets and infrastructure. However, in times of societal 
adaptaion and change, numerous PESTEL factors can become interrelated, 
generating significant complexity and uncertainty. Nevertheless, pre-existing 
clues of dynamic stressors and process stresses are apparent in water company 
transactional data and surveillance data used by government agencies to 
monitor COVID-19. This white paper focuses on stressors occuring from a 
wastewater catchment that have a significant effect on the stresses generated 
within a specific WRRF. As shown in Fig. 2, these direct external stressors have 
the greatest potential to have significant influence on wastewater volumes and 
concentrations.

Fig. 1 Resilience to a stressor presented by Juan-García et al. (2017) adapted from 
Mugume et al. (2015)
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The evolution of resilience as a concept in the 
water sector

Since the original research of Holling (1973) and Walker et al. (2004), interest 
in resilience has grown in all subject areas. The investigation of resilience as a 
determinant for water and wastewater systems has been well documented, see 
Butler et al. (2014). A reasonable level of success has been achieved in water 
supply resilience, although this is often not suitable for the complex multi-variate 
mechanisms, and often competing processes, associated with wastewater delivery 
and treatment. When wastewater is generated numerous factors are involved, 
for example, urban creep or groundwater infiltration to sewers can dramatically 
increase the flow to a receiving WRRF. The randomness and unpredictability of 
changes leads to significant reductions in resilience over a short period of time 
(i.e., hrs). Attempts have been made to circumvent this with research focussing 
more toward general resilience (Sweetapple et al., 2022a), which utilises a more 
systems of systems approach that can be highly complex. From an industry 
perspective, there has been growing interest in resilience as a concept by the UK 
water companies; however, the principles have not been fully embedded. This 
was exemplified by the Ofwat price review 2019 (PR19), where only two water 
companies provided evidence of securing the long-term resilience of their assets 

Fig. 2 Direct (external) and indirect (internal) stressors adapted from Butler et al. 
(2014).
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(Ofwat, 2019). Therefore indicating that the challenge is not the generation of 
greater knowledge; but applying resilience theory and embedding its principles 
into daily operation.

For this to happen, dynamic changes in operation that influence resilience, 
should consider the use of existing WRRF data to build a knowledge base of past 
stressors and process stresses/resilience (dynamic resilience) in preparation to 
future events. For instance, to avoid potentially damaging pollution incidents, it is 
crucial to understand how stressors manifest leading up to such dramatic changes 
in watewater volume and concentration. To understand these dynamic events, 
the interaction of stressors and process stresses/resilience should be considered 
as dynamic resilience (Fig. 3). The principle of dynamic resilience in Fig. 3 shows 
the stressor as having a bell shaped peak and the process stresses generated as 
a well defined peak concentration. Differences between stressors (cause) and 
process stresses (effect) occur because the WRRF behaves differently to the 
generated stressor due to recirculations and sludge extractions. Understanding 
the magnitude and duration of events has benefits, gives rise to the possibility 
of classifying stressor influence at the WRRF or for separate processes. It also 
allows for a reaction time between an event occurring (stressor) and its effect on 
the process (stress). 

Fig. 3 Dynamic resilience diagram showing the separation of stressors and process 
stresses.
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Experts’ 
perspectives of 
resilience 

The following two sections provide an overview of the resilience based challenges 
faced by water companies and those interpreting data from wastewater-based 
epidemiology.

Resilience from a water company perspective
Wastewater flow data is central to understanding the dynamic resilience of 
wastewater infrastructure and WRRF and to understand the pressure exerted 
by wastewater catchments (stressors). Water companies in the UK are making 
great strides in understanding how their assets react to climate change while 
incorporating meteorological and demographic data. In this section, Dr Ben 
Martin speaks of the challenges associated with asset and infrastructure 
resilience and how Thames Water are embedding dynamic digital systems.

Improving asset and infrastructure resilience is a significant challenge for the 
water industry as operational disruptions become more common and difficult to 
predict. The most significant of these disruptions are extreme weather events, 
which have recently delivered a month’s worth of rain in one hour. Most sewers 
and wastewater treatment plants are many decades old and were simply not 
designed to cope with the loads and temperature fluctuations recorded in recent 
years. Such weather events have been coupled with the COVID pandemic, which 
resulted in spatial disruptions to normal wastewater loads as the mobility of the 
population reduced during lockdowns. 

Thames Water is currently working on a host of data driven projects to increase 
the resilience of ageing asset and infrastructure base. These digital initiatives 
will output control systems that can manage disruptive loads more effectively 
and efficiently. Additionally, a digital twin is being developed for Beckton sewage 
treatment works, the largest wastewater treatment plant in the UK. This brings 
together a number of hydraulic, pneumatic, and biological models to digitally 
represent its physical assets. This is expected to deliver a 10-20% reduction in 
workforce planning, a 30-50% reduction in predictive maintenance, and a 20-
40% reduction in reactive maintenance. 

The definition of dynamic resilience used in this white paper, as shown in Fig. 
2 and also presented in the International Water Association (IWA) Modelling 
and Integrated Assessment (MIA) Specialist Group (SG) webinar (Holloway et al. 
2021) is detailed below as: 

“The dynamic, temporal variation of stressors and process stresses (and resilience) 
in response to events outside of standard operating conditions”
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A broad rollout of connected digital monitoring instruments throughout assets 
and infrastructure is planned. These include prediction systems so that assets 
can be maintained and replaced long before failure, machine learning to enable 
autonomous waste catchments, and open data frameworks for sharing across 
water companies. Linkages will also be established with meteorological and 
demographic datasets. These will inform operational control strategies that 
can respond in real time, or even ahead of time, to enable rapid recovery from 
events. These dynamic digital systems will ensure that as disruptions become the 
norm, wastewater can still be treated to exceed environmental targets.

Resilience of water management systems for 
public health protection

Social resilience has a key role in the protection of public health. In this section, Dr 
Matthew Wade writes of the challenges associated with asset and infrastructure 
resilience and its impact on monitoring wastewater-based epidemiology (WBE).

Developments in the water sector to embrace Industry 4.0 and digital 
transformation philosophy have demonstrated an evolution in the function of 
wastewater. While the focus of treatment and transport infrastructure has been 
generally on protecting the environment from harmful pollutants and, more 
recently, resource and energy recovery from wastewater (Daigger, 2009; Guest 
et al., 2009; Kehrein et al., 2020), the COVID-19 pandemic has given greater 
visibility to a broader function of wastewater systems, public health protection.

Wastewater monitoring as a tool for public health intervention dates to the 
mid-19th Century, when physician John Snow mapped data of cholera incidence 
in Soho, London to determine the source of the outbreak (a water pump 
contaminated with sewage) (Tulchinsky, 2018). The detection of sewage borne 
indicators of public health, commonly known as WBE, has been used to monitor 
a range of targets from poliovirus to illicit drug use in urban centres (Larsen et 
al., 2021). From the onset of the COVID-19 pandemic, the SARS-CoV-2 viral RNA 
was shown to both be detectable and quantifiable in sewer samples collected 
throughout the sewer network, typically at the inlet of treatment works, within-
network, or at near-source (e.g., building scale) (Ahmed et al., 2020; Sweetapple 
et al., 2022b).

Given the evolution of the virus, subsequent work has also demonstrated the 
ability to detect its variants (Crits-Christoph et al., 2021). Once evidenced, the 
challenge for those working with WBE for COVID-19 was to determine the value 
of these datasets for public health policy and decision-making. The rapid uplift 
of COVID-19 science in wastewater and the fragmented nature of its utilisation 
across the globe means that the true value proposition of WBE as tool to 
complement existing measures of public health remains unproven and uncertain. 
Factors influencing its resilience include a lack of empirical data to understand 
and mitigate for wide range of uncertainties associated with the data from 
WBE (Wade et al., 2022), a robust understanding of the relationship between 
the target marker(s) of public health (Mao et al., 2020), and the general lack of 
standardisation and protocols to enable WBE to be implemented as a function 
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of public health policy (Wu et al. 2021). Nevertheless, WBE has great potential 
as a tool for public health protection beyond COVID and across a broad range of 
targets (e.g., lifestyle chemicals, pathogens, metabolites of health), settings (e.g., 
community-wide, critical infrastructure), environments (e.g., urban centres, low-
income settings) and functions (e.g., rapid response, long-term surveillance of 
health trends, targeted monitoring). 

For WBE to be useful in the long-term, its research, development, and use needs 
to be considered together with the wider efforts to ensure infrastructural and 
data resilience. This should be viewed as a resilience of the systems where 
information is collected, as a failing sewer network will inevitably lead to greater 
measurement uncertainty. Additionally, it is crucial to consider its ability to ensure 
public health resilience as the information acquired by WBE must be reliable and 
usable by the stakeholders receiving it. This effort must be global. Water and 
disease know no borders and ensuring the resilience of water systems in highly 
resourced regions (e.g., those with the means to embrace digital tools to manage 
the increasingly voluminous and valuable data streams), must be matched by 
initiatives to maximise the value and potential for WBE in low-income settings 
(e.g., development of low-cost but smart technologies (Gwenzi, 2022)).

The importance 
of data for 
the evaluation 
of dynamic 
resilience

This section evaluates the challenge of using actual stochastic data, presents 
possible methods for generating valuable insights, and finally evaluates dynamic 
resilience. It finishes with the future perspectives of dynamic resilience and how 
the best possible environmental outcomes can be achieved.

Data and the importance of scale: changing from 
micro to macro analysis

Before examples of dynamic resilience are presented, it is crucial to note some 
of the pitfalls of using actual WRRF data. The use of large datasets captured 
over multiple years can be overwhelming (e.g., 174,720 data points when 
logged at 15 min intervals over 5 years). Conventional concentration-time plots 
are not sufficient, providing poor resolution due to the variation frequency of 
actual stochastic WRRF data. An example of this can be seen in Fig. 4a, where 
aggregated boxplots of hourly WRRF influent flow over 10 years show significant 
variability. It also indicates that this data is not normal or lognormal, so when 
averages are taken (Fig. 4b), the central tendency is skewed providing inaccurate 
flow predictions. Therefore, significant uncertainty can be created when making 
statistical assumptions, particularly when data is being used as a timeseries for 
data-driven models or other statistical evaluations (Newhart et al., 2019). To 
avoid introducing significant uncertainty the entire data set must be considered 
(macro analysis). This also avoids the temptation to be miopic, analysing each 
discrete variation (micro analysis) which can also lead to erroneous outputs when 
performing simulations.
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Fig. 4 Ten years of hourly flow data over a 24 h period aggregated into boxplots (a) 
and average flows by year (b).

Toward digital dynamic resilience of WRRF
The dynamics of digital systems have long been the interest of those working 
on solutions where real-world interfacing (sensors) is crucial for process control. 
Examples of this occur throughout robotic manufacturing and high-value fluids 
such as oil and gas. Unfortunately, being termed as a ‘waste’ rather than a 
‘product’ places less importance on the value of the end product, resulting in 
less instrumentation (less concequential loss). Fortunately, for water companies, 
they generate data intensively from WRRF and processes. In decentralised rural 
locations, instruments are commonly used for compliance monitoring and are 
less likely to be used for real-time process control. However, larger centralised 
WRRF often combine monitoring of complicane with signals/data generated for 
process control. These larger WRRF processes have vast data silos spanning years 
or even decades. Much of this data generated for larger centralised WRRF holds 
clues to how dynamic stressors emerge and wheter they generate process stress/
resilience. Therefore, to avoid exhaustive iterations for modelling and simulation 
of scenarios, this data could be used as a timeseries to evaluate the dynamic 
resilience and generate knowledge of past and present events through empirical 
and mechanistic modelling. Modelling improves the context of events, and the 
data makes evaluating them relative to actual conditions. Over time it may be 
possible to make predictions on how future stressors may influence specific 
WRRF processes. A data-driven dynamic resilience philosophy therefore uses 
actual WRRF data and established modelling practices to compute the impact 
of a stressor, then process related stresses/resilience. This takes the focus from 
the intensive simulation of event based scenarios (stressors), to evaluating actual 
scenarios in the context WRRF instrument data.
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Case study: 
dynamic 
resilience using 
10 years of data 
from a WRRF in 
the south of the 
UK

In this section, 10 years of data has been used to 1) identify significant events 
through the evaluation of prominence and dominance, 2) extract a standard 
operating condition for an existing WRRF and 3) provide examples of dynamic 
resilience visualisations.

Evaluating the dominance and prominence of 
events under dynamic conditions

Events or stressors are typically characterised by their magnitude (the prominance 
of the variation). The most significant event magnitudes can be isolated then 
scaled for direct comparison. This can be done for both the stressor (cause) and 
process stresses/resilience (effect) which can be evaluated independently to 
isolate only the most severe, as shown in Fig. 5. When a significant event has 
been isolated using prominence, the event dominance can be estimated as the 
difference between the stressor exerted to the WRRF and the resultant process 
stresses/resilience. The difference in time between the stressor and process 
stress peaks allows estimation of the reaction time for applying interventions 
(maximum time to react). It is then possible to classify events as stressors and 
process stresses to estimate a reaction time for future events (i.e., the time 
between the stressor peak and the process stress occurring). Without event 
insight, it may not possible to learn from interventions applied to WRRF that 
reduce process-related stresses.

Examples of prominence are shown in Fig. 5a as time-based examples of 
stressor prominence (brown line) and process stresses prominence (red line). 
Significant events can be seen in Fig. 5a, when stressors are close to 1 and the 
resulting process stresses approach -1. The event dominance is shown in Fig. 5b 
(difference between the stressor and process stresses), allowing for isolation of 
events that have the most significant effect on process performance. Therefore, 
using prominence and dominance based analysis, stressor events can be isolated, 
then evaluated based on the effect the event has on the WRRF (process stress/
resilience).

Fig. 5 Prominence (a) and dominance (b) of stressors and process stresses adapted 
from Holloway et al., 2021.
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Failure as a consequence of normal operation
As much as we don’t like to admit it, failure is a consequence of standard 
operation, originating from specific and operational changes or stressor 
influences. Therefore, as provided in the definition of resilience, failure also 
has a magnitude, with the extent of failure present over a scale. An example 
of this is failure to remove sludge from a system, which over time accumulates 
solids until a compliance breach occurs. This is far less significant, than a toxicity 
event that essentially kills off microbes in a biological system. Therefore, the 
extent of failure is crucial when evaluating resilience, meaning dynamic metrics 
then become scalable from a standard operating condition (where the process 
normally operates). Therefore, when we consider WRRF process failure, we 
must first consider the failure extent, and what constitutes a failure (a failure 
of what and to what extent?). For example, operational staff may consider the 
the color of the process fluids or visual tests to evaluate process conditions. 
These are empirical observations of indirect/internal stressors that prevent the 
process from functioning and are common. However, process scientists and 
engineers take more of a theoretical method of diagnostics, with failure defined 
as a compliance breach. Therefore, when considering events, it is essential to 
appreciate both empirical and theretical thought processes.

WRRF processes are subject to diurnal variation, which is also dynamic, but 
typical of standard operation for a specific wastewater catchment. Therefore, it 
differs from original WRRF process engineering design information, particularly 
when urban creep and populations in the wastewater catchment increase. The 
difference with dynamic resilience is that it takes the standard operation from 
actual operational data, rather than historial design information. This extracted 
condition is called the standard operating condition (SOC) relating specifically 
to the nuances of a catchment or WRRF. This can be done by using clustering 
methods to extract three flow conditions similar to that of Borzooei et al. (2020). 
The clustered outputs for a particular WRRF are shown in Fig. 6a, and the extracted 
SOC in Fig. 6b alongside actual time-based data. This SOC is important when 
considering WRRF that have been retrofitted with supplementary processes to 
increase WRRF capacity, which is common practice internationally. The extent 
of process failure is classified as the process stress index (PSI) and is anything 
outside a WRRF specific SOC.

Fig. 6 Examples of clustering methods for the generation (a) and outputted SOC 
including degrees for freedom (b).
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The outputs of the clustering shown in Fig. 6 take an engineered resilience 
stance (Holling, 1996) and must be further elaborated to include a safety factor 
or degree of freedom to exclude normal variation (Fig. 6b). Also, outputs based 
on failure should consider the balance of compliance risk to operating costs, 
with evaluations based on the WRRF meeting permitted limits at the lowest 
operating cost. However, caution should be applied to a minimum operational 
cost approach so the process does not become unstable or vulnerable to 
changes resulting from external stressors. Therefore, evaluating the magnitude 
of variation (stressor) as the extent of failure allows failure prediction and 
numerous event classification possibilities based on process stress or resilience 
(i.e., dynamic resilience).

Communication of dynamic resilience
Visual communication is often overlooked, which is possibly why Corominas 
et al. (2018) found that only 16% of publications on transforming data into 
knowledge reference a commercially available product. Therefore, it is possible 
that there is a distinct gap between the evaluation of water resilience and how 
it is communicated to those operating and maintaining wastewater processes. 
The communication of resilience data, in the run up to a significant event can be 
challenging, particularly if there is no knowledge of past events and the associate 
interventions. Unfortunately, inadequate operational communication often 
comes as an incident investigation, such as the Longford gas plant explosion 
(Conlin and O’meara, 2006). This highlights the importance of linking resilience 
with complex modelled outputs in a communicable form for operational 
interpretation. It should also reflect the time-based dynamics of actual WRRF 
operating resilience.

To address this, the concept of dynamic resilience aims to incorporate time-
based evaluations to visually communicate event severity to operational staff. 
self ordering windows (SOW) are used as a visualisation method for stressor and 
process stress/resilience observations. These SOW use a 48 hrs event window 
and, through transformation, plot the PSI as a contoured heat map. The SOW 
then becomes a significant event window based on its duration, prominence 
and dominance. In most cases, SOW represent a unique dynamic resilience 
fingerprint extracted from actual WRRF data, while keeping complex modelling 
practices out of sight (IWA ASM model series). The SOW principles also avoid 
having numerous number of iterations required for methods such as Monte-
Carlo and other iterative simulations. 

Examples of dynamic resilience are shown in Fig. 7 to demonstrate the impact of 
flow on heterotrophic biomass concentrations, where Fig. 7a shows the stressor 
and Fig. 7b the process stresses resulting from the stressor. The stressor in Fig. 
7a shows concentrated zones at the highest flows and lowest concentrations 
and process stress at the highest concentration and middle of the flow range. 
The grey areas in each plot indicates zones of no data. Therefore, the concept 
of data richness is also crucial to SOW success, where inputs must reflect the 
time-based range and specific variation of the WRRF. 
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The main challenge of dynamic resilience is the duration of the time-based 
window selected for evaluations. It can also be extremely difficult to predict 
when an event starts and ends, with characteristics varying depending on 
specific or multiple stressors. This will be crucial for the expansion of dynamic 
resilience to incorporate real time control (RTC) for live management of stressors 
and process stresses/resilience generated at the WRRF. An extension of that 
could be a traffic light system, as shown in Fig. 8, mapping the process stresses, 
but also communicating them for the application automated interventions.

Fig. 7 Influence of a stressor and generated process stresses using the SOW 
approach for activated sludge.

Fig. 8 Process stress analysis using the SOW principles, adapted from Holloway et 
al., 2021.

1

2

3



IWA Digital Water  |  Digital dynamic resilience for wastewater treatment processes: exploiting real data for long term resilience  | 18   

Summary 
of dynamic 
resilience 
methods

The dynamic resilience approach proposed in this white paper has demonstrated 
the possibility of using actual WRRF data to understand and communicate 
dynamic resilience. The methods presented used prominence and dominance 
to isolate significant events, then a macro data analysis approach to extract a 
dynamic SOC. Actual data points were used to scale system failure magnitude 
and compute the dynamic resilience of a specific WRRF as a SOW, which reflects 
specific process nuances in response to significant events. This includes the 
possibility of isolating novel events generated by climate or societal change. 
However, the main challenge for dynamic resilience is selecting a suitable time 
over which dynamic resilience is monitored, as this can dramatically influence 
SOW output and affect the classification of events. 

Overall, the dynamic resilience methodology has provided a possible link 
between resilience, data-driven modelling and visualisations through time based 
contoured heat plots (SOW). It is hoped that these methods could eventually 
close gap between evaluating and modelling resilience and its communication to 
wastewater operators within water companies globally. However, the methods 
presented are limited to countries that 1) have the instrumentation installed in 
WRRF or networks and, 2) have the capacity and knowledge to maintain these 
instruments.

Reflection 
on dynamic 
resilience for an 
uncertain future

The future of the planet is reliant on how resilient the human race can be to 
changes in the climate and rapidly emerging stressors. As we face increasing 
uncertainty from political, social and environmental factors, water companies and 
government agencies are forced to manage the dynamics of resilience resulting 
from changes outside of their control. Although many theoretical methodologies 
of resilience have been proposed, a unified approach has not yet been developed 
to 1) satisfy the dynamics of resilience that occurs from an actual WRRF and 2) 
communicate outputs to operational and maintenance staff. 

At the time of writing, the Russian invasion of Ukraine is causing significant 
political and economic instability. This, again, will likely generate novel stressors 
that result in process stresses in wastewater assets and infrastructure as 
transient populations exit Ukraine to neighbouring countries. These countries 
will now be subject to increased demand for clean water and increased capacity 
to treat additional wastewaters generated by those that have exited Ukraine. It is 
extremely likely (Pörtner et al., 2022) that we will continue to see the emergence 
of novel, rapidly emerging stressors, and if we continue on the same path, there 
is high confidence that their occurrences will increase. 

It is also important to consider the factors that have contributed to stressors in 
recent history. Reflecting on the past three years, the following factors/stressors 
have emerged globally:

1. February 2022: IPCC WGII sixth assessment report predicts with high confidence 
global increases in inland flooding, flood and storm damage in coastal areas and 
damages to infrastructure (Pörtner et al., 2022).
2. February 2022: the Russian invasion of Ukraine caused the migration into 
neighbouring European countries.
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3. March 2020 to present: the COVID-19 pandemic escalates, causing 
unprecedented damage to human health, global economies and freedom of 
movement (Ramos and Hynes, 2020).

The above emphasises the absolute need to understand the dynamic resilience 
of not just in assets and infrastructure but also due to societal change. Dynamic 
resilience has the premise of providing the means to understand the real-
time adaptive capacity by monitoring stressors and process stresses/resilience 
directly from WRRF and associated processes (instruments). We must consider 
how existing instruments and data from these instruments can drive us toward 
Industry 4.0. Instrumentation combined with an understanding of dynamic 
resilience could allow us to understand and to adapt resilience in response to 
novel global events, while understanding where improvements can be made. 

We already have many connected networks for intensive data exchange, along 
with large data silos (historical knowledge). Using these tools, it may be possible to 
access the real-time dynamic resilience of not just WRRF, but any interconnected 
infrastructure network. Therefore, the future of dynamic resilience and dynamic 
processes should embrace the possibility of improving resilience through digitally 
connected assets and infrastructure as the beating heart of the modern world 
(Fig. 9).

Fig. 9 Dynamic resilience for autonomy of the urban water cycle under the precept 
of Industry 4.0.
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Additional resources
If this white paper has been of interest, please also watch our IWA MIA SG 
webinar on ‘Modelling wastewater treatment resilience for improved decision 
making and resource recovery’:
https://www.youtube.com/watch?v=jg8PPkP_zPc

If you have an interest in the research presented in this white paper, please 
complete our short survey (5 min): 
https://www.surveymonkey.co.uk/r/33FQ9BQ
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